機械学習

【第8回】教師なし学習の基本とラベルなきデータの可能性(後編)

後編の目標 現代のデータ分析では、特にテキストデータや高次元データの扱いが難しく、複雑なデータ構造の理解と分析が求められます。これらのデータから隠れたパターンや構造を見つけることは、ビジネスのインサイトや新たな発見を生み出すために不可欠です...
プログラミング

【第8回】教師なし学習の基本とラベルなきデータの可能性(中編)

中編の目標 今回の目標は、高次元データの次元削減と異常検知技術について理解し、それらを実装できるスキルを習得することです。次元削減を通じてデータの可視化と理解を深め、異常検知を使って異常なデータパターンを発見する力を身につけます。具体的には...
機械学習

【第3回】情報理論と高度な数学概念による機械学習の最前線

前回の振り返り 前回のブログでは、機械学習を支える数学の基礎として確率統計と最適化手法について詳しく学びました。 今回は、情報理論と高度な数学概念が機械学習にどのように貢献するかを探ります。特に、エントロピーやKLダイバージェンスなどの概念...
機械学習

【第2回】確率統計と最適化手法による機械学習の深化

前回の振り返り 前回は、機械学習の基礎となる線形代数と微分積分について学びました。これらの数学的概念が、どのようにして機械学習アルゴリズムの設計や解析に活用されるのかを理解することができたと思います。 今回のテーマは「確率統計と最適化手法に...
機械学習

【第1回】機械学習における線形代数と微分積分の基礎

このブログの目的 機械学習はさまざまな分野で活用されており、その基礎となる数学の理解が重要視されています。本シリーズでは、日本の高校生でも理解できる範囲で、機械学習を支える数学の基礎を3回にわたって解説します。 機械学習を理解するための基礎...
プログラミング

【第8回】教師なし学習の基本とラベルなきデータの可能性【前編】

前編の目標:データのクラスタリングと分類 データのラベルがない状態でも、クラスタリングによってデータのグループを見つけ、分類する力を養います。K-meansや階層型クラスタリングといった手法を通じて、データをどのように分割・構造化できるかを...
データ分析

【第7回】教師あり学習の基礎と代表的なアルゴリズム(後編)

第7回の目標 第7回後編のブログでは、サポートベクターマシン(SVM)と多層パーセプトロン(MLP)に焦点を当て、これらのアルゴリズムの理論的背景と実装方法を詳しく解説します。 SVMでは、ハードマージンとソフトマージンの概念、カーネル関数...
データ分析

【第7回】教師あり学習の基礎と代表的なアルゴリズム(中編)

第7回の目標 第7回中編のブログでは、決定木とランダムフォレストを深く理解し、実践的に活用することを目指します。ただ単にアルゴリズムの仕組みを知るだけでなく、それぞれの特性や適用場面を意識しながら学習を進めることが重要です。 決定木では、不...
機械学習

【第7回】教師あり学習の基礎と代表的なアルゴリズム(前編)

第7回の目標 機械学習は、大きく分けて教師あり学習と教師なし学習の二つのカテゴリーに分類されます。今回のテーマである教師あり学習は、入力データとそれに対応する正解(ラベル)が与えられた状態でモデルを学習させる手法です。これにより、新たなデー...
機械学習

【第6回】線形回帰とロジスティック回帰の実装と最急降下法の役割

第6回の目標 第6回では、線形回帰とロジスティック回帰の基本的な理論を理解し、これらのモデルを実際に実装する能力を身につけることを目指します。具体的な学習目標は以下の通りです。 線形回帰の理解 線形回帰の定義と数学的表現を理解し、特徴量とタ...